metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) bis(4-bromobenzoate) 6.5-hydrate

Su-Fang Ye and Bi-Song Zhang*

College of Material Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China Correspondence e-mail: zbs_jy@163.com

Received 12 March 2010; accepted 21 March 2010

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.013 Å; disorder in main residue; R factor = 0.065; wR factor = 0.250; data-to-parameter ratio = 13.2.

In the title compound, $[Zn(C_{12}H_8N_2)_3](C_7H_4BrO_2)_2 \cdot 6.5H_2O$, the Zn^{II} atom is coordinated by six N atoms from three 1,10phenanthroline (phen) molecules in a distorted octahedral geometry. The chelating phen ligands exhibit nearly perfect coplanarity (r.m.s. deviations of 0.048, 0.039 and 0.061 Å). The mean interplanar distances of 3.51 (2) and 3.54 (4) Å between adjacent phen ligands indicate π - π stacking interactions, which connect the complex cations into chains along [101]. The 4-bromobenzoate anions and the uncoordinated water molecules, parts of which are not fully occupied, are linked by $O-H \cdots O$ hydrogen bonds. Two carboxylate O atoms and one Br atom in the 4-bromobenzoate anions are each disordered over two sites with occupancy factors of 0.60 and 0.40.

Related literature

For other zinc(II) complexes with 1,10-phenanthroline ligands, see: Aghabozorg *et al.* (2005); Chen *et al.* (2006); Liu *et al.* (1998); Wei, Yuan *et al.* (2004); Wei, Zheng *et al.* (2002).

Experimental

Crystal data

 $[Zn(C_{12}H_8N_2)_3](C_7H_4BrO_2)_{2}-6.5H_2O$ $M_r = 1123.11$ Triclinic, $P\overline{1}$ a = 13.098 (3) Å b = 14.240 (3) Å c = 16.281 (3) Å $\alpha = 108.68$ (3)° $\beta = 107.13 (3)^{\circ}$ $\gamma = 105.11 (3)^{\circ}$ $V = 2528.9 (15) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 2.13 \text{ mm}^{-1}$ T = 290 K $0.28 \times 0.20 \times 0.19 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID

diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.603, T_{\max} = 0.675$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.250$ S = 1.158780 reflections 667 parameters 19484 measured reflections 8780 independent reflections 5375 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.039$

9 restraints H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.80\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.95\ e\ \text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometr

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H5A···O2	0.82	1.90	2.700 (11)	164
$O5-H5B\cdots O6^{i}$	0.82	2.23	2.676 (11)	114
O6−H6A···O3	0.82	1.97	2.763 (2)	162
$O6-H6A\cdots O3'$	0.82	2.03	2.767 (5)	150
$O6-H6B\cdotsO8^{ii}$	0.82	2.20	2.788 (5)	129
$O7-H7A\cdots O5^{i}$	0.82	1.97	2.787 (10)	176
$O7 - H7B \cdots O4$	0.82	1.89	2.687 (11)	163
O8−H8A…O3	0.82	2.04	2.803 (2)	155
$O8-H8A\cdots O3'$	0.82	1.99	2.789 (2)	166
$O8-H8B\cdots O1^{iii}$	0.82	2.19	2.862 (5)	139
$O8-H8B\cdots O1'^{iii}$	0.82	1.96	2.685 (6)	146
$O10-H10A\cdots O11^{iv}$	0.82	2.24	2.806 (2)	126
O10−H10B···O2	0.82	2.11	2.739 (2)	134
O11−H11A···O5	0.82	2.27	2.826 (5)	126
$O11 - H11B \cdot \cdot \cdot O10^{iv}$	0.82	2.33	2.806 (2)	117
$O12-H12A\cdots O13^{i}$	0.82	2.50	2.981 (5)	118
$O12 - H12B \cdot \cdot \cdot O4$	0.82	2.29	2.786 (2)	119
$O13-H13A\cdots O12^{v}$	0.82	2.19	2.796 (5)	131
$O13-H13B\cdots O7^{i}$	0.82	1.95	2.746 (2)	165

Symmetry codes: (i) -x + 2, -y + 3, -z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) x - 1, y - 1, z; (iv) -x + 2, -y + 3, -z; (v) x, y + 1, z - 1.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the financial support of the Education Office of Zhejiang Province (grant No. 20051316).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2291).

References

Aghabozorg, H., Nakhjavan, B., Zabihi, F., Ramezanipour, F. & Aghabozorg, H. R. (2005). Acta Cryst. E61, m2664–m2666.

Chen, H., Xu, X.-Y., Gao, J., Yang, X.-J., Lu, L.-D. & Wang, X. (2006). *Huaxue Shiji*, **28**, 478–480.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Liu, C.-M., You, X.-Z. & Chen, W. (1998). J. Coord. Chem. 46, 233–243. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wei, Y., Yuan, C. & Yang, P. (2004). Acta Cryst. E60, m1686-m1688.

Wei, D.-Y., Zheng, Y.-Q. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 2005– 2012.

Acta Cryst. (2010). E66, m474 [doi:10.1107/S1600536810010561]

Tris(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) bis(4-bromobenzoate) 6.5-hydrate

S.-F. Ye and B.-S. Zhang

Comment

Zinc ions with 1,10-phenanthroline (phen) ligands can form tris(phen)zinc(II) (Aghabozorg *et al.*, 2005; Chen *et al.*, 2006; Liu *et al.*, 1998; Wei, Yuan *et al.*, 2004; Wei, Zheng *et al.*, 2002). In this paper, we report the synthesis and structure of a tris(phen)zinc(II) complex.

The title compound consists of $[Zn(phen)_3]^{2+}$ complex cations, 4-bromobenzoate anions and uncoordinated water molecules (Fig. 1). In the cation, the Zn^{II} atom is coordinated by six N atoms from three phen molecules to complete a distorted ZnN₆ octahedral geometry. The Zn—N bond lengths are in the range of 2.126 (6)–2.199 (6)Å. The chelating phen ligands exhibit nearly perfect coplanarity. The mean interplanar distances of 3.51 (2) and 3.54 (4)Å between adjacent phen ligands indicate π – π stacking interactions (Fig. 2). The complex cations are connected to each other via π – π stacking interactions into a chain along [1 0 1]. The 4-bromobenzoate anions and the uncoordinated water molecules are linked by O—H…O hydrogen bonds (Table 1).

Experimental

 $ZnSO_4.7H_2O(0.237 \text{ g}, 0.826 \text{ mmol})$ was dissolved in appropriate amount of water and then 1M Na₂CO₃ solution was added. ZnCO₃ was obtained by filtration and washed with distilled water for 5 times. The freshly prepared ZnCO₃, phen.H₂O (0.0496 g, 0.25 mmol) and 4-bromobenzoic acid (0.050 g, 0.25 mmol) were mixed in CH₃OH/H₂O (15 ml, v/v = 1:2) and stirred for 2 h. The resulting cream suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 433 K for 97 h. After the autoclave was cooled to room temperature in 43 h, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 6 months afforded brown block single crystals.

Refinement

C-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 Å and $U_{iso}(H)$ = $1.2U_{eq}(C)$. H atoms of the water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$. Two carboxylate O atoms (O1 and O3) and one Br atom (Br2) are each disordered over two sites with occupancy factors of 0.60 and 0.40. Four water molecules (O10, O11, O12 and O13) are half-occupied and the two water molecules (O9 and O14) are quarter-occupied.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms and uncoordinated water molecules are omitted for clarity.

Fig. 2. The π - π stacking interactions (dashed double arrows), with the mean interplanar distances of 3.51 (2) and 3.54 (4)Å.

Tris(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) bis(4-bromobenzoate) 6.5-hydrate

Z = 2

F(000) = 1142

 $\theta = 3.1 - 25.0^{\circ}$

 $\mu = 2.13 \text{ mm}^{-1}$ T = 290 K

Block, yellow

 $0.28 \times 0.20 \times 0.19 \text{ mm}$

 $D_{\rm x} = 1.475 \ {\rm Mg \ m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 13525 reflections

Crystal data

 $[Zn(C_{12}H_8N_{2})_3](C_7H_4BrO_2)_2 \cdot 6.5H_2O$ $M_r = 1123.11$ Triclinic, *P*T Hall symbol: -P 1 a = 13.098 (3) Å b = 14.240 (3) Å c = 16.281 (3) Å $\alpha = 108.68$ (3)° $\beta = 107.13$ (3)° $\gamma = 105.11$ (3)° V = 2528.9 (15) Å³

Data collection

Rigaku R-AXIS RAPID diffractometer	8780 independent reflections
Radiation source: fine-focus sealed tube	5375 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.039$
ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -15 \rightarrow 15$
$T_{\min} = 0.603, \ T_{\max} = 0.675$	$k = -16 \rightarrow 16$
19484 measured reflections	$l = -19 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.250$	H-atom parameters constrained
<i>S</i> = 1.15	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1215P)^{2} + 3.2158P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
8780 reflections	$(\Delta/\sigma)_{max} < 0.001$
667 parameters	$\Delta \rho_{max} = 0.80 \text{ e} \text{ Å}^{-3}$
9 restraints	$\Delta \rho_{min} = -0.95 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Zn1	0.67519 (7)	0.86835 (7)	0.19869 (5)	0.0560 (3)	
N1	0.7784 (5)	0.9984 (5)	0.1831 (4)	0.0580 (14)	
N2	0.5521 (5)	0.9405 (5)	0.1550 (4)	0.0587 (14)	
N3	0.5319 (5)	0.7306 (5)	0.1766 (4)	0.0585 (14)	
N4	0.6269 (5)	0.7512 (5)	0.0531 (4)	0.0600 (14)	
N5	0.8131 (5)	0.8264 (5)	0.2669 (4)	0.0576 (14)	
N6	0.7160 (5)	0.9524 (4)	0.3480 (4)	0.0538 (13)	
Br1	0.83384 (7)	1.27529 (7)	0.40614 (7)	0.0820 (3)	
Br2	0.3576 (11)	0.3728 (8)	0.5774 (7)	0.0897 (12)	0.60
01	1.2712 (11)	1.617 (5)	0.377 (3)	0.087 (5)	0.60
Br2'	0.3469 (17)	0.3886 (13)	0.5953 (11)	0.0897 (12)	0.40
01'	1.2774 (16)	1.629 (8)	0.362 (6)	0.087 (5)	0.40
O2	1.1233 (5)	1.6134 (5)	0.2571 (5)	0.0925 (18)	
O3	0.6296 (19)	0.892 (3)	0.631 (3)	0.087 (6)	0.60
O3'	0.597 (3)	0.879 (5)	0.636 (5)	0.087 (6)	0.40
O4	0.7686 (6)	0.8797 (5)	0.7350 (5)	0.0960 (19)	
05	1.1945 (5)	1.7751 (5)	0.2083 (4)	0.0920 (18)	
H5A	1.1640	1.7193	0.2118	0.138*	
H5B	1.2580	1.7764	0.2098	0.138*	
O6	0.5911 (5)	1.0804 (5)	0.6688 (4)	0.0845 (16)	
H6A	0.6177	1.0337	0.6620	0.127*	
H6B	0.5542	1.0700	0.6141	0.127*	
07	0.9162 (5)	1.0824 (5)	0.7940 (4)	0.0891 (17)	
H7A	0.8820	1.1226	0.7903	0.134*	
H7B	0.8655	1.0264	0.7829	0.134*	
08	0.4664 (5)	0.8127 (5)	0.4431 (4)	0.0823 (15)	
H8A	0.4977	0.8216	0.4983	0.124*	
H8B	0.4086	0.7618	0.3992	0.124*	
09	0.051 (3)	0.206 (3)	-0.012 (2)	0.107 (9)	0.25
H9B	0.0769	0.2258	0.0461	0.160*	0.25
H9A	0.0745	0.2430	-0.0369	0.160*	0.25
O10	0.9611 (10)	1.5048 (9)	0.0723 (7)	0.087 (3)	0.50
H10A	0.8976	1.4562	0.0520	0.130*	0.50
H10B	1.0168	1.5063	0.1131	0.130*	0.50
O11	1.1443 (9)	1.7210 (8)	0.0139 (7)	0.075 (3)	0.50
H11A	1.1859	1.7720	0.0662	0.112*	0.50

H11B	1.0849	1.6786	0.0098	0.112*	0.50
012	0.8335 (7)	0.9090 (9)	0.9234 (6)	0.065 (3)	0.50
H12A	0.8195	0.9575	0.9119	0.097*	0.50
H12B	0.8037	0.8562	0.8719	0.097*	0.50
O13	1.0171 (17)	1.8620 (16)	0.0149 (10)	0.121 (6)	0.50
H13A	1.0012	1.9048	-0.0050	0.182*	0.50
H13B	1.0440	1.8717	0.0706	0.182*	0.50
O14	0.097 (2)	0.339 (3)	-0.031 (2)	0.136 (12)	0.25
H14A	0.0700	0.3688	0.0043	0.204*	0.25
H14B	0.0535	0.3342	-0.0816	0.204*	0.25
C1	0.8918 (6)	1.0293 (6)	0.1990 (5)	0.0642 (18)	
H1	0.9320	0.9897	0.2185	0.077*	
C2	0.9512 (7)	1.1167 (7)	0.1878 (6)	0.076 (2)	
H2	1.0291	1.1348	0.1991	0.091*	
C3	0.8929 (7)	1.1769 (7)	0.1595 (6)	0.075 (2)	
H3	0.9315	1.2364	0.1522	0.090*	
C4	0.7765 (6)	1.1478 (6)	0.1424 (5)	0.0627 (18)	
C5	0.7082 (8)	1.2060 (7)	0.1135 (6)	0.077 (2)	
Н5	0.7413	1.2625	0.1003	0.093*	
C6	0.6007 (8)	1.1811 (7)	0.1055 (6)	0.077 (2)	
H6	0.5615	1.2233	0.0906	0.092*	
C7	0.5417 (7)	1.0906 (6)	0.1190 (5)	0.0653 (19)	
C8	0.4278 (7)	1.0608 (7)	0.1102 (6)	0.075 (2)	
H8	0.3847	1.1000	0.0947	0.090*	
C9	0.3798 (7)	0.9734 (7)	0.1246 (6)	0.078 (2)	
Н9	0.3044	0.9540	0.1206	0.094*	
C10	0.4431 (6)	0.9139 (6)	0.1450 (5)	0.0664 (19)	
H10	0.4079	0.8529	0.1519	0.080*	
C11	0.6028 (6)	1.0283 (6)	0.1431 (4)	0.0541 (16)	
C12	0.7218 (6)	1.0589 (6)	0.1556 (4)	0.0538 (16)	
C13	1.1649 (7)	1.5866 (7)	0.3201 (6)	0.070 (2)	
C14	1.0849 (6)	1.5085 (6)	0.3391 (5)	0.0595 (17)	
C15	0.9672 (7)	1.4864 (6)	0.3041 (6)	0.071 (2)	
H15	0.9374	1.5167	0.2648	0.085*	
C16	0.8927 (7)	1.4199 (6)	0.3264 (6)	0.070 (2)	
H16	0.8144	1.4085	0.3052	0.084*	
C17	0.9367 (7)	1.3716 (6)	0.3801 (5)	0.0625 (18)	
C18	1.0531 (7)	1.3907 (6)	0.4151 (6)	0.071 (2)	
H18	1.0818	1.3575	0.4518	0.085*	
C19	1.1268 (6)	1.4602 (7)	0.3946 (5)	0.070 (2)	
H19	1.2057	1.4744	0.4188	0.084*	
C21	0.4868 (6)	0.7190 (6)	0.2371 (5)	0.0628 (18)	
H21	0.5278	0.7675	0.3010	0.075*	
C22	0.3804 (7)	0.6374 (7)	0.2098 (6)	0.073 (2)	
H22	0.3519	0.6318	0.2548	0.088*	
C23	0.3192 (8)	0.5664 (7)	0.1168 (7)	0.082 (2)	
H23	0.2471	0.5128	0.0969	0.098*	
C24	0.3663 (7)	0.5747 (6)	0.0502 (6)	0.071 (2)	
C25	0.3092 (8)	0.5004 (7)	-0.0495 (7)	0.088 (3)	

Zn1	0.0597 (5)	0.0667 (5)	0.0523 (5)	0.0308 (4)	0.0242 (4)	0.0325 (4)
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Atomic displac	cement parameters	$s(A^2)$				
C52	0.8387 (6)	0.8548 (5)	0.361	0 (5)	0.0523 (15)	
C51	0.7871 (6)	0.9222 (5)	0.404	1 (5)	0.0561 (16)	
H50	0.6281	1.0443	0.351	1	0.076*	
C50	0.6757 (6)	1.0222 (6)	0.388	39 (5)	0.0633 (18)	
H49	0.6727	1.1130	0.510	06	0.087*	
C49	0.7014 (7)	1.0631 (7)	0.484	7 (6)	0.072 (2)	
H48	0.7860	1.0556	0.607	2	0.085*	
C48	0.7702 (7)	1.0302 (7)	0.542	28 (6)	0.071 (2)	
C47	0.8146 (6)	0.9586 (6)	0.502	24 (5)	0.0597 (17)	
H46	0.9057	0.9429	0.619	03	0.091*	
C46	0.8895 (7)	0.9221 (7)	0.555	50 (6)	0.075 (2)	
H45	0.9854	0.8374	0.552	25	0.091*	
C45	0.9371 (7)	0.8596 (7)	0.515	55 (6)	0.076 (2)	
C44	0.9159 (6)	0.8252 (6)	0.416	69 (5)	0.0628 (18)	
H43	1.0158	0.7382	0.403	9	0.086*	
C43	0.9662 (7)	0.7622 (6)	0.370	03 (6)	0.071 (2)	
H42	0.9800	0.6971	0.248	39	0.084*	
C42	0.9437 (7)	0.7362 (6)	0.278	32 (6)	0.070 (2)	
H41	0.8496	0.7488	0.162	.9	0.077*	
C41	0.8658 (6)	0.7683 (6)	0.227	70 (5)	0.0643 (18)	
H39	0.7155	0.6706	0.675	55	0.091*	
C39	0.6360 (7)	0.6512 (7)	0.657	75 (6)	0.076 (2)	
H38	0.5994	0.4961	0.637	'1	0.088*	
C38	0.5672 (8)	0.5469 (7)	0.635	57 (6)	0.073 (2)	
C37	0.4492 (7)	0.5199 (6)	0.611	7 (5)	0.070 (2)	
H36	0.3233	0.5745	0.595	50	0.093*	
C36	0.4020 (7)	0.5930 (7)	0.609	92 (6)	0.078 (2)	
H35	0.4376	0.7450	0.623	34	0.094*	
C35	0.4714 (7)	0.6959 (7)	0.628	80 (6)	0.078 (2)	
C34	0.5895 (7)	0.7272 (6)	0.653	33 (5)	0.0666 (19)	
C33	0.6651 (8)	0.8397 (7)	0.675	53 (6)	0.079 (2)	
C32	0.4730 (6)	0.6576 (6)	0.083	52 (5)	0.0611 (17)	
C31	0.5244 (7)	0.6672 (6)	0.018	32 (5)	0.0612 (18)	
H30	0.7482	0.8183	0.018	37	0.083*	
C30	0.6785 (7)	0.7599 (7)	-0.00	047 (5)	0.069 (2)	
H29	0.6718	0.6915	-0.13	367	0.098*	
C29	0.6320 (9)	0.6848 (8)	-0.09	987 (6)	0.082 (3)	
H28	0.4932	0.5503	-0.19	993	0.100*	
C28	0.5267 (9)	0.6002 (8)	-0.13	358 (6)	0.084 (2)	
C27	0.4715 (7)	0.5915 (6)	-0.07	753 (5)	0.070 (2)	
H26	0.3213	0.4586	-0.17	727	0.104*	
C26	0.3592 (9)	0.5079 (7)	-0.10)90 (6)	0.087 (3)	
H25	0.2362	0.4464	-0.07	727	0.105*	

N1	0.066 (4)	0.066 (4)	0.052 (3)	0.035 (3)	0.025 (3)	0.029 (3)
N2	0.065 (4)	0.073 (4)	0.053 (3)	0.034 (3)	0.026 (3)	0.038 (3)
N3	0.068 (4)	0.064 (4)	0.053 (3)	0.032 (3)	0.029 (3)	0.029 (3)
N4	0.066 (4)	0.076 (4)	0.052 (3)	0.039 (3)	0.027 (3)	0.033 (3)
N5	0.059 (3)	0.065 (4)	0.057 (3)	0.026 (3)	0.026 (3)	0.033 (3)
N6	0.059 (3)	0.063 (3)	0.058 (3)	0.030 (3)	0.032 (3)	0.035 (3)
Br1	0.0786 (6)	0.0848 (6)	0.0949 (6)	0.0271 (5)	0.0398 (5)	0.0536 (5)
Br2	0.110 (2)	0.070 (3)	0.081 (3)	0.0233 (16)	0.0395 (18)	0.032 (2)
01	0.067 (4)	0.106 (13)	0.103 (16)	0.018 (5)	0.035 (5)	0.075 (7)
Br2'	0.110 (2)	0.070 (3)	0.081 (3)	0.0233 (16)	0.0395 (18)	0.032 (2)
01'	0.067 (4)	0.106 (13)	0.103 (16)	0.018 (5)	0.035 (5)	0.075 (7)
02	0.079 (4)	0.106 (5)	0.112 (5)	0.034 (3)	0.039 (4)	0.073 (4)
03	0.093 (14)	0.070 (10)	0.085 (6)	0.015 (14)	0.020 (12)	0.048 (5)
O3'	0.093 (14)	0.070 (10)	0.085 (6)	0.015 (14)	0.020 (12)	0.048 (5)
O4	0.082 (4)	0.096 (5)	0.093 (4)	0.022 (4)	0.020 (4)	0.047 (4)
05	0.095 (4)	0.093 (4)	0.109 (5)	0.044 (4)	0.042 (4)	0.064 (4)
O6	0.084 (4)	0.096 (4)	0.087 (4)	0.042 (3)	0.039 (3)	0.046 (3)
07	0.079 (4)	0.102 (5)	0.104 (4)	0.042 (3)	0.041 (3)	0.058 (4)
08	0.088 (4)	0.082 (4)	0.076 (4)	0.035 (3)	0.027 (3)	0.038 (3)
09	0.11 (2)	0.13 (3)	0.10(2)	0.07 (2)	0.035 (18)	0.07 (2)
O10	0.073 (7)	0.078 (7)	0.063 (6)	0.005 (6)	0.006 (5)	0.017 (6)
011	0.087 (7)	0.071 (7)	0.060 (6)	0.012 (6)	0.032 (5)	0.033 (5)
012	0.056 (5)	0.105 (8)	0.055 (5)	0.037 (5)	0.030 (5)	0.049 (6)
013	0.169 (17)	0.150 (16)	0.066 (8)	0.092 (14)	0.039 (10)	0.058 (11)
014	0.063 (16)	0.13 (3)	0.13 (2)	-0.008 (16)	0.029 (16)	0.00 (2)
C1	0.059 (4)	0.084 (5)	0.065 (4)	0.039 (4)	0.032 (4)	0.035 (4)
C2	0.062 (5)	0.089 (6)	0.081 (5)	0.021 (4)	0.042 (4)	0.038 (5)
C3	0.081 (6)	0.074 (5)	0.089 (6)	0.032 (4)	0.047 (5)	0.047 (5)
C4	0.069 (5)	0.074 (5)	0.059 (4)	0.035 (4)	0.028 (4)	0.038 (4)
C5	0.099 (7)	0.081 (6)	0.082 (5)	0.047 (5)	0.045 (5)	0.054 (5)
C6	0.092 (6)	0.083 (6)	0.081 (5)	0.048 (5)	0.037 (5)	0.052 (5)
C7	0.077 (5)	0.077 (5)	0.060 (4)	0.048 (4)	0.030 (4)	0.035 (4)
C8	0.063 (5)	0.087 (6)	0.086 (6)	0.043 (4)	0.026 (4)	0.044 (5)
C9	0.062 (5)	0.101 (7)	0.094 (6)	0.057 (5)	0.037 (4)	0.043 (5)
C10	0.058(4)	0.078 (5)	0.075 (5)	0.034 (4)	0.030 (4)	0.039 (4)
C11	0.061 (4)	0.071 (4)	0.045 (3)	0.038 (4)	0.022 (3)	0.031 (3)
C12	0.064 (4)	0.065 (4)	0.044 (3)	0.033 (3)	0.023(3)	0.030 (3)
C13	0.066 (5)	0.074 (5)	0.080 (5)	0.027 (4)	0.035 (4)	0.041 (5)
C14	0.059 (4)	0.058 (4)	0.064 (4)	0.026 (3)	0.024 (3)	0.028 (4)
C15	0.065 (5)	0.072 (5)	0.079 (5)	0.030 (4)	0.020(4)	0.041 (4)
C16	0.062 (5)	0.071 (5)	0.089 (5)	0.030 (4)	0.034 (4)	0.043 (5)
C17	0.069(5)	0.060 (4)	0.058 (4)	0.026 (4)	0.022 (4)	0.028 (4)
C18	0.071 (5)	0.072 (5)	0.076 (5)	0.032 (4)	0.025 (4)	0.041 (4)
C19	0.051 (4)	0.085(5)	0.072 (5)	0.022 (4)	0.022 (4)	0.039 (4)
C21	0 070 (5)	0 070 (5)	0.069(4)	0.034(4)	0.040(4)	0.037(4)
C22	0.082 (6)	0.074 (5)	0.078 (5)	0.031 (4)	0.046 (5)	0.037 (5)
C23	0.076 (6)	0.071 (5)	0.104 (7)	0.025 (4)	0.045 (5)	0.039 (5)
C24	0.069 (5)	0.062(5)	0.075 (5)	0.027 (4)	0.025 (4)	0.025 (4)
C25	0.087 (6)	0.071 (6)	0.080 (6)	0.021(5)	0.022 (5)	0.023(1)
	3.007 (0)	0.071 (0)	0.000 (0)	0.021 (0)	5.522 (5)	0.021 (0)

C26	0.103 (7)	0.071 (6)	0.052 (4)	0.034 (5)	0.007 (5)	0.009 (4)
C27	0.081 (5)	0.068 (5)	0.048 (4)	0.030 (4)	0.018 (4)	0.016 (4)
C28	0.108 (7)	0.086 (6)	0.056 (5)	0.051 (6)	0.028 (5)	0.025 (5)
C29	0.115 (8)	0.102 (7)	0.059 (5)	0.063 (6)	0.050 (5)	0.041 (5)
C30	0.077 (5)	0.089 (6)	0.057 (4)	0.040 (4)	0.033 (4)	0.038 (4)
C31	0.069 (5)	0.073 (5)	0.062 (4)	0.044 (4)	0.029 (4)	0.038 (4)
C32	0.065 (4)	0.067 (5)	0.060 (4)	0.033 (4)	0.025 (4)	0.033 (4)
C33	0.093 (6)	0.078 (6)	0.070 (5)	0.031 (5)	0.032 (5)	0.040 (5)
C34	0.078 (5)	0.072 (5)	0.061 (4)	0.036 (4)	0.028 (4)	0.037 (4)
C35	0.075 (5)	0.080 (6)	0.086 (6)	0.038 (5)	0.028 (5)	0.041 (5)
C36	0.064 (5)	0.096 (6)	0.083 (5)	0.037 (5)	0.030 (4)	0.047 (5)
C37	0.086 (6)	0.065 (5)	0.060 (4)	0.027 (4)	0.029 (4)	0.032 (4)
C38	0.088 (6)	0.078 (6)	0.071 (5)	0.040 (5)	0.037 (4)	0.042 (4)
C39	0.072 (5)	0.096 (6)	0.082 (5)	0.043 (5)	0.039 (4)	0.050 (5)
C41	0.068 (5)	0.068 (5)	0.065 (4)	0.032 (4)	0.034 (4)	0.030 (4)
C42	0.065 (5)	0.069 (5)	0.099 (6)	0.040 (4)	0.039 (4)	0.046 (5)
C43	0.067 (5)	0.066 (5)	0.089 (6)	0.031 (4)	0.024 (4)	0.045 (5)
C44	0.062 (4)	0.059 (4)	0.073 (5)	0.022 (4)	0.023 (4)	0.040 (4)
C45	0.066 (5)	0.087 (6)	0.073 (5)	0.027 (4)	0.014 (4)	0.050 (5)
C46	0.069 (5)	0.096 (6)	0.054 (4)	0.024 (5)	0.017 (4)	0.038 (4)
C47	0.055 (4)	0.069 (5)	0.054 (4)	0.017 (3)	0.020 (3)	0.032 (4)
C48	0.072 (5)	0.081 (5)	0.061 (4)	0.028 (4)	0.035 (4)	0.026 (4)
C49	0.076 (5)	0.076 (5)	0.068 (5)	0.030 (4)	0.041 (4)	0.023 (4)
C50	0.062 (4)	0.076 (5)	0.064 (4)	0.035 (4)	0.032 (4)	0.033 (4)
C51	0.059 (4)	0.055 (4)	0.057 (4)	0.022 (3)	0.022 (3)	0.031 (3)
C52	0.054 (4)	0.050 (4)	0.058 (4)	0.019 (3)	0.021 (3)	0.031 (3)

Geometric parameters (Å, °)

Zn1—N1	2.126 (6)	C9—C10	1.378 (10)
Zn1—N5	2.159 (6)	С9—Н9	0.9300
Zn1—N6	2.160 (5)	С10—Н10	0.9300
Zn1—N3	2.175 (6)	C11—C12	1.436 (9)
Zn1—N2	2.195 (5)	C13—C14	1.495 (10)
Zn1—N4	2.199 (6)	C14—C19	1.376 (10)
N1—C1	1.352 (9)	C14—C15	1.384 (10)
N1—C12	1.370 (8)	C15—C16	1.389 (10)
N2—C10	1.323 (9)	С15—Н15	0.9300
N2—C11	1.356 (8)	C16—C17	1.364 (10)
N3—C21	1.321 (8)	С16—Н16	0.9300
N3—C32	1.365 (9)	C17—C18	1.377 (10)
N4—C30	1.328 (9)	C18—C19	1.388 (10)
N4—C31	1.354 (9)	C18—H18	0.9300
N5-C41	1.342 (9)	С19—Н19	0.9300
N5—C52	1.361 (8)	C21—C22	1.396 (10)
N6—C50	1.330 (9)	C21—H21	0.9300
N6—C51	1.358 (8)	C22—C23	1.356 (12)
Br1-C17	1.903 (7)	C22—H22	0.9300
Br2—C37	1.920 (13)	C23—C24	1.417 (11)

O1—C13	1.286 (15)	С23—Н23	0.9300
Br2'—C37	1.878 (19)	C24—C32	1.388 (11)
O1'—C13	1.297 (19)	C24—C25	1.445 (11)
O2—C13	1.235 (9)	C25—C26	1.335 (12)
O3—C33	1.279 (15)	C25—H25	0.9300
O3'—C33	1.293 (19)	C26—C27	1.441 (12)
O4—C33	1.255 (10)	C26—H26	0.9300
O5—H5A	0.8200	C27—C31	1.378 (10)
О5—Н5В	0.8200	C27—C28	1.399 (12)
О6—Н6А	0.8200	C28—C29	1.377 (13)
О6—Н6В	0.8202	C28—H28	0.9300
07—Н7А	0.8194	C29—C30	1.386 (11)
07—Н7В	0.8200	С29—Н29	0.9300
O8—H8A	0.8202	С30—Н30	0.9300
O8—H8B	0.8200	C31—C32	1.434 (10)
09—013 ⁱ	1.11 (3)	C33—C34	1.507 (11)
09—H9B	0.8199	C34—C35	1 382 (11)
09—H9A	0.81000	$C_{34} - C_{39}$	1.302(11) 1 385(10)
010—H10A	0.8200	C35—C36	1 386 (12)
010—H10B	0.8198	С35—Н35	0.9300
011—H11A	0.8200	C36—C37	1 347 (11)
011—H11B	0.8201	С36—Н36	0.9300
012—H12A	0.8200	$C_{37} - C_{38}$	1 389 (11)
012—H12B	0.8200	$C_{38} - C_{39}$	1 386 (11)
012 012 00^{i}	1 11 (3)	C38—H38	0.9300
013 H13A	0.8200	C30 H30	0.9300
012 H12P	0.8200	C41 C42	1.380(10)
014 H9A	1 2830	C41 H41	0.0300
014 H14A	0.8200	C_{41} C_{42} C_{43}	1.341(11)
014—114A 014—114P	0.8200	$C_{42} = C_{43}$	0.0200
$C_1 = C_2$	0.8200 1.384 (10)	C42 - C42	0.9300
$C_1 = C_2$	0.0200	C43—C44	0.0200
C_1	0.9300 1 294 (11)	C43 - H43	0.9300
$C_2 = C_3$	0.0200	C44—C32	1.397(9) 1.434(11)
$C_2 = H_2$	1 386 (10)	$C_{44} = C_{45}$	1.434(11) 1.324(12)
C3_H3	0.9300	C45—H45	0.9300
C4—C12	1 308 (0)	C46—C47	1,422(10)
C_{4}	1.598(9) 1.448(10)	C46—H46	0.9300
C5-C6	1 315 (11)	C47 - C48	1 383 (10)
C5_H5	0.9300	C47 - C51	1.412 (9)
C6-C7	1 / 38 (11)	C_{48} C_{49}	1.412(0)
С6—Н6	0.9300	C48—H48	0.9300
C7C8	1 389 (10)	C49 - C50	1 375 (10)
C7_C11	1.307 (10)	C49_H49	0.9300
C8_C9	1.710(7)	C50_H50	0.9300
C8_H8	0.9300	C51_C52	1 /3/ (0)
Co	0.7500		1.434 (9)
N1 - Zn1 - NS	97.8 (2)	C1/-C18-H18	120.5
N1 - Zn1 - N6	97.9(2)	C19—C18—H18	120.5

N5—Zn1—N6	77.1 (2)	C14—C19—C18	121.0 (7)
N1—Zn1—N3	163.1 (2)	C14—C19—H19	119.5
N5—Zn1—N3	96.8 (2)	С18—С19—Н19	119.5
N6—Zn1—N3	93.7 (2)	N3—C21—C22	123.2 (7)
N1—Zn1—N2	77.8 (2)	N3—C21—H21	118.4
N5—Zn1—N2	168.7 (2)	C22—C21—H21	118.4
N6—Zn1—N2	93.2 (2)	C23—C22—C21	119.1 (7)
N3—Zn1—N2	89.4 (2)	С23—С22—Н22	120.4
N1—Zn1—N4	93.5 (2)	C21—C22—H22	120.4
N5—Zn1—N4	95.9 (2)	C22—C23—C24	119.3 (8)
N6—Zn1—N4	167.3 (2)	С22—С23—Н23	120.4
N3—Zn1—N4	76.5 (2)	С24—С23—Н23	120.4
N2—Zn1—N4	94.7 (2)	C32—C24—C23	118.0 (8)
C1—N1—C12	117.1 (6)	C32—C24—C25	118.9 (8)
C1—N1—Zn1	128.1 (5)	C23—C24—C25	123.1 (8)
C12—N1—Zn1	114.8 (5)	C26—C25—C24	121.1 (8)
C10—N2—C11	118.9 (6)	С26—С25—Н25	119.4
C10—N2—Zn1	129.4 (5)	C24—C25—H25	119.4
C11—N2—Zn1	111.6 (4)	C25—C26—C27	120.7 (8)
C21—N3—C32	118.3 (6)	С25—С26—Н26	119.7
C21—N3—Zn1	128.2 (5)	С27—С26—Н26	119.7
C32—N3—Zn1	112.5 (4)	C31—C27—C28	119.0 (8)
C30—N4—C31	118.7 (6)	C31—C27—C26	119.2 (8)
C30—N4—Zn1	128.0 (5)	C28—C27—C26	121.8 (8)
C31—N4—Zn1	112.8 (4)	C29—C28—C27	118.1 (8)
C41—N5—C52	117.9 (6)	C29—C28—H28	121.0
C41—N5—Zn1	128.6 (5)	C27—C28—H28	121.0
C52—N5—Zn1	113.1 (4)	C28—C29—C30	119.9 (8)
C50—N6—C51	118.1 (6)	С28—С29—Н29	120.1
C50—N6—Zn1	128.7 (4)	С30—С29—Н29	120.1
C51—N6—Zn1	113.0 (4)	N4—C30—C29	122.1 (8)
H5A—O5—H5B	105.1	N4—C30—H30	119.0
H6A—O6—H6B	103.7	С29—С30—Н30	119.0
H7A—O7—H7B	103.8	N4—C31—C27	122.2 (7)
H8A—O8—H8B	128.4	N4—C31—C32	117.4 (7)
O13 ⁱ —O9—H9B	85.2	C27—C31—C32	120.4 (7)
O13 ⁱ —O9—H9A	149.8	N3—C32—C24	122.0 (7)
H9B—O9—H9A	123.1	N3—C32—C31	118.4 (7)
H10A—O10—H10B	118.5	C24—C32—C31	119.5 (7)
H11A—O11—H11B	116.6	O4—C33—O3	119.2 (16)
H12A—O12—H12B	105.8	O4—C33—O3'	134 (3)
O9 ⁱ —O13—H13A	121.3	O4—C33—C34	118.4 (7)
O9 ⁱ —O13—H13B	80.3	O3—C33—C34	122.2 (18)
H13A—O13—H13B	127.0	O3'—C33—C34	107 (2)
H9A—O14—H14A	107.9	C35—C34—C39	117.5 (8)
H9A—O14—H14B	107.7	C35—C34—C33	121.5 (7)
H14A—O14—H14B	99.6	C39—C34—C33	121.0 (8)
N1—C1—C2	123.2 (7)	C34—C35—C36	121.5 (8)

N1—C1—H1	118.4	С34—С35—Н35	119.2
C2—C1—H1	118.4	С36—С35—Н35	119.2
C1—C2—C3	119.1 (7)	C37—C36—C35	119.7 (8)
C1—C2—H2	120.5	С37—С36—Н36	120.2
С3—С2—Н2	120.5	С35—С36—Н36	120.2
C2—C3—C4	119.4 (7)	C36—C37—C38	121.1 (8)
С2—С3—Н3	120.3	C36—C37—Br2'	114.4 (9)
С4—С3—Н3	120.3	C38—C37—Br2'	124.1 (8)
C3—C4—C12	118.7 (6)	C36—C37—Br2	122.3 (7)
C3—C4—C5	123.6 (7)	C38—C37—Br2	116.5 (7)
C12—C4—C5	117.7 (7)	C39—C38—C37	118.5 (8)
C6—C5—C4	121.7 (7)	С39—С38—Н38	120.8
С6—С5—Н5	119.1	С37—С38—Н38	120.8
C4—C5—H5	119.1	C34—C39—C38	121.7 (8)
C5—C6—C7	122.1 (7)	С34—С39—Н39	119.2
С5—С6—Н6	118.9	С38—С39—Н39	119.2
С7—С6—Н6	118.9	N5-C41-C42	122.3 (7)
C8—C7—C11	117.7 (7)	N5-C41-H41	118.9
C8—C7—C6	123.9 (7)	C42—C41—H41	118.9
C11—C7—C6	118.3 (7)	C43—C42—C41	119.4 (7)
C9—C8—C7	119.3 (7)	C43—C42—H42	120.3
С9—С8—Н8	120.3	C41—C42—H42	120.3
С7—С8—Н8	120.3	C42—C43—C44	121.0 (7)
C8—C9—C10	120.0 (7)	C42—C43—H43	119.5
С8—С9—Н9	120.0	C44—C43—H43	119.5
С10—С9—Н9	120.0	C52—C44—C43	116.3 (7)
N2—C10—C9	122.3 (7)	C52—C44—C45	118.5 (7)
N2-C10-H10	118.8	C43—C44—C45	125.2 (7)
C9—C10—H10	118.8	C46—C45—C44	121.6 (7)
N2—C11—C7	121.7 (6)	C46—C45—H45	119.2
N2-C11-C12	119.3 (6)	С44—С45—Н45	119.2
C7—C11—C12	119.1 (6)	C45—C46—C47	122.1 (7)
N1-C12-C4	122.5 (6)	C45—C46—H46	118.9
N1-C12-C11	116.6 (6)	С47—С46—Н46	118.9
C4—C12—C11	121.0 (6)	C48—C47—C51	118.3 (6)
O2—C13—O1	130.0 (13)	C48—C47—C46	123.7 (7)
O2—C13—O1'	114 (2)	C51—C47—C46	118.0 (7)
O2—C13—C14	119.1 (7)	C47—C48—C49	118.4 (7)
O1—C13—C14	110.9 (12)	C47—C48—H48	120.8
O1'—C13—C14	127 (2)	C49—C48—H48	120.8
C19—C14—C15	118.5 (7)	C50—C49—C48	120.2 (8)
C19—C14—C13	121.1 (7)	С50—С49—Н49	119.9
C15—C14—C13	120.4 (6)	C48—C49—H49	119.9
C14—C15—C16	121.4 (7)	N6-C50-C49	122.7 (7)
C14—C15—H15	119.3	N6—C50—H50	118.7
C16—C15—H15	119.3	С49—С50—Н50	118.7
C17—C16—C15	118.6 (7)	N6—C51—C47	122.2 (6)
С17—С16—Н16	120.7	N6—C51—C52	117.7 (6)
С15—С16—Н16	120.7	C47—C51—C52	120.1 (6)

C16-C17-C18	121.5 (7)	N5-C52-C44	122.9 (7)
C16—C17—Br1	118.9 (6)	N5	117.4 (5)
C18—C17—Br1	119.6 (5)	C44—C52—C51	119.6 (6)
C17—C18—C19	118.9 (7)		
Symmetry codes: (i) $-x+1$, $-y+2$,	, <i>—Z</i> .		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O5—H5A…O2	0.82	1.90	2.700 (11)	164
O5—H5B···O6 ⁱⁱ	0.82	2.23	2.676 (11)	114
O6—H6A···O3	0.82	1.97	2.763 (2)	162
O6—H6A…O3'	0.82	2.03	2.767 (5)	150
O6—H6B···O8 ⁱⁱⁱ	0.82	2.20	2.788 (5)	129
O7—H7A···O5 ⁱⁱ	0.82	1.97	2.787 (10)	176
O7—H7B…O4	0.82	1.89	2.687 (11)	163
O8—H8A…O3	0.82	2.04	2.803 (2)	155
O8—H8A…O3'	0.82	1.99	2.789 (2)	166
O8—H8B…O1 ^{iv}	0.82	2.19	2.862 (5)	139
O8—H8B…O1' ^{iv}	0.82	1.96	2.685 (6)	146
O10—H10A…O11 ^v	0.82	2.24	2.806 (2)	126
O10—H10B…O2	0.82	2.11	2.739 (2)	134
O11—H11A…O5	0.82	2.27	2.826 (5)	126
O11—H11B…O10 ^v	0.82	2.33	2.806 (2)	117
012—H12A…O13 ⁱⁱ	0.82	2.50	2.981 (5)	118
O12—H12B…O4	0.82	2.29	2.786 (2)	119
O13—H13A…O12 ^{vi}	0.82	2.19	2.796 (5)	131
O13—H13B…O7 ⁱⁱ	0.82	1.95	2.746 (2)	165

Symmetry codes: (ii) -*x*+2, -*y*+3, -*z*+1; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) *x*-1, *y*-1, *z*; (v) -*x*+2, -*y*+3, -*z*; (vi) *x*, *y*+1, *z*-1.

